• 魏凤英

  • 职称:

    教授

  • 职务:

    数学与应用数学系党支部书记

  • 主讲课程:

    本科生课程:高等代数选讲、数学前沿教授讲座、数学I、数学II;研究生课程:微分方程定性与稳定性理论

  • 研究方向:

    传染病动力学、生物数学、随机微分(泛函)方程及其应用

  • 办公室:

    数计学院4号楼321

  • 电子邮件:

    weifengying@fzu.edu.cn

个人简介:

魏凤英,女,汉族,19768月出生,吉林四平人,中共党员,研究生学历、理学博士学位,教授、硕士生导师,现任数学与统计学院数学与应用数学系党支部书记、福建省生物数学学会秘书长、福建省女科技工作者协会理事、中华预防医学会会员

20067月毕业于东北师范大学数学与统计学院应用数学专业,获理学博士学位;20158月至20167月在芬兰赫尔辛基大学进行学术交流与访问。主要从事传染病建模及其动力学机制、微分方程在数学生物学中的应用,包括定性与稳定性等方面的研究。作为负责人完成国家级科研项目三项、省部级科研项目项、出版教材部,累计发表国内外核心期刊论文百余篇,其中高水平刊物收录60余篇。曾获福建省级高层次人才C第十届福建省自然科学优秀学术论文二等奖福建省优秀硕士学位论文指导教师等奖项;曾参加范更华教授主持的离散数学及其应用“211工程”重点学科团队。曾因参加新冠疫情团队研判工作,收到国务院应对新型冠状病毒肺炎疫情联防联控机制综合组的感谢信两封,国家卫生健康委员会和中央广播电视总台的感谢信各一封。

主讲本科生课程高等代数选讲》、《数学I》、《数学II》、《数学前沿教授讲座》等,以及研究生课程微分方程定性与稳定性理论》、《专业英语》等。累计培养硕士研究生30余名,其中,1人获福建省优秀硕士学位论文,7人获国家奖学金和福州大学优秀硕士学位论文奖。

20067月参加工作,先后担任数学与计算机科学学院讲师、副教授、教授、硕士生导师,20146月起担任数学系副主任,20183月起担任数学系党支部书记;20219月起担任数学与统计学院数学与应用数学系党支部书记;曾担任数学与计算机科学学院学术委员会委员、学位委员会委员曾担任福州大学第六次第七次党代会代表。

工作经历:

- 20215至今,福州大学,数学与统计学院,教授,硕导;

- 20198月至9月,赫尔辛基大学,数学与统计系,合作交流

- 20172月至3月,赫尔辛基大学,数学与统计系,合作交流

- 20158月至20168月,赫尔辛基大学,数学与统计系,访问教授;

- 20147月至20214,福州大学,数学与计算机科学学院,教授,硕导;

- 20099月至20146月,福州大学,数学与计算机科学学院,副教授,硕导;

- 20068月至20098月,福州大学,数学与计算机科学学院,讲师,硕导。

教育经历:

- 20039月至20067月,东北师范大学应用数学专业,获理学博士学位;

- 20009月至20037月,东北师范大学应用数学专业,获理学硕士学位;

- 19969月至20007月,吉林师范大学数学与应用数学,获理学学士学位。

科研兴趣:

- 传染病动力学机制及相关控制问题;

- 随机微分(泛函)方程理论及应用,包括随机系统解的存在唯一性、稳定性等问题;

- 具有阶段结构生态系统的持久性与稳定性问题。

主要代表性论文

[1] Fengying Wei, Ruiyang Zhou, Zhen Jin, et al., Studying the impacts of variant evolution for a generalized age-group transmission model, PLoS One, 2024, 19(7): e0306554.

[2] Rongli Mo, Xingmin Wu, Fengying Wei, Population-toxicant models with stage structure and the psychological effects, Inter. J. Biomath. 2024, 17: 2450075.

[3] Yongmei Cai, Xuerong Mao, Fengying Wei, An advanced numerical scheme for multi-dimensional stochastic Kolmogorov equations with superlinear coefficients, J. Comput. Appl. Math. 2024, 437: 115472.

[4] Fengying Wei, Ruiyang Zhou, Zhen Jin, et al., COVID-19 transmission driven by age-group mathematical model in Shijiazhuang City of China, Infect. Dis. Model. 2023,8(4): 1050-1062.

[5] 李丹,魏凤英,毛学荣,具有媒体报道的SVIR传染病模型的动力学性质数学物理学报2023,43A(5):1595-1606.

[6] Xuanpei Zhai, Wenshuang Li, Fengying Wei, et al., Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations, Chaos, Solitons Fractals. 2023, 69, 113224.

[7] Dan Li, Fengying Wei, Xuerong Mao, Stationary distribution and density function of a stochastic SVIR epidemic model, J. Frankl. Inst.-Eng. Appl. Math. 2022, 359(16): 9422-9449.

[8] Fangfang Liu, Fengying Wei, An epidemic model with Beddington-DeAngelis functional response and environmental fluctuations, Physica A. 2022, 597: 127321.

[9] Xuerong Mao, Fengying Wei, Teerapot Wiriyakraikul, Positivity Preserving Truncated Euler-Maruyama Method for Stochastic Lotka-Volterra Competition Model. J. Comput. Appl. Math. 2021, 394, 113566.

[10] Fengying Wei, Hui Jiang, Quanxin Zhu, Dynamical behaviors of a heroin population model with standard incidence rates between distinct patches. J. Flankl.Inst.-Eng. Appl. Math. 2021, 358(9): 4994-5013.

[11] Hebai Chen, Fengying Wei, Yong-Hui Xia, et al., Global dynamics of an asymmetry piecewise linear differential system: theory and applications. Bullet. Sci. Math. 2020, 160, 102858.

[12] Fengying Wei, Rui Xue, Stability and extinction of SEIR epidemic models with generalized nonlinear incidence. Math. Comput. Simul.  2020, 170, 1-15.

[13] Fengying Wei Chengjia WangSurvival analysis of a biomathematical model with fluctuations and migrations between patchesAppl. Math. Model. 202081113-127.

[14] Rui XueFengying WeiStability and extinction of SEIR epidemic models with generalized nonlinear incidenceMath. Comput. Simul. 2020170: 1-15.

[15] Lihong ChenFengying Wei Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence ratePhysica A. 2020545122852.

[16] Ruoxin Lu,Fengying Wei Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence ratePhysica A 2019513572-587.

[17] Shuqi Gan,Fengying Wei Study on a susceptible-infected-vaccinated model with delay and proportional vaccinationInter. J. Biomath. 201811(8): 1850102.

[18] 魏凤英,林青腾,非线性发病率随机流行病模型的动力学行为,数学学报 2018611):155-166.

[19] Fengying Wei, Stefan A.H.Geritz, Jiaying Cai, A stochastic single-species population model with partial population tolerance in a polluted environment, Appl. Math. Lett. 201763: 130-136.

[20] Fengying Wei, Lihong Chen, Psychological effect on single-species population models in a polluted environment,Math. Biosci. 2017290: 22-30.

[21] Fengying Wei, Jiamin Liu, Long-time behavior of a stochastic epidemic model with varying population size,Physica A 2017470: 146-153.

[22] 魏凤英,林青腾,一类具有校正隔离率的随机SIQS模型的绝灭性与分布,数学物理学报201737A6):1148-1161.

[23] 魏凤英,陈芳香,具有饱和发生率的随机SIRS流行病模型的渐近行为,系统科学与数学20163612):2444-2453.

[24] Fengying Wei, Qiuyue Fu, Hopf bifurcation and stability for predator-prey systems with Beddington-DeAngelis type functional response and stage structure for prey incorporating refuge, Appl. Math. Model. 2016, 40(1): 126-134.

[25] Fengying Wei, Fangxiang Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Physica A. 2016, 453: 99-107.

[26] Jiamin Liu,Fengying Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Physica A. 2016, 464: 241-250.

[27] Fengying Wei, Qiuyue Fu, Globally asymptotic stability of predator-prey model with stage structure incorporating prey refuge,Inter. J. Biomath. 2016, 9(4): 1650058.

[28] Lihong Chen,Fengying Wei, Persistence and distribution of a stochastic susceptible-infected-recovered epidemic model with varying population size, Physica A. 2017, 483: 386-397.

[29] Fengying Wei, Existence of multiple positive periodic solutions to a periodic predator-prey system with harvesting terms and Hollling III type functional response, Commun. Nonlinear Sci. Numer. Simul. 2011, 16(4): 2130-2138.

[30] Wei Fengying, Wang Ke, The periodic solution of functional differential equations with infinite delay, Nonlinera Anal. RWA. 2010, 11(4) 2669-2674.

[31] Wei Fengying, Lin Yangrui, Que Lulu, Chen Yingying, Wu Yunping, Xue Yuanfu, Periodic solution and global stability for a nonautonomous competitive Lotka-Volterra diffusion system, Appl. Math. Comput. 2010, 216(10): 3097-3104.

[32] Wei Fengying, Wang Ke, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl. 2007, (331): 516-531.

[33] Wei Fengying, Wang Ke, Positive periodic solutions of an n-species ecological system with infinite delay, J. Comput. Appl. Math. 2007, 208: 362-372.

[34] Wei Fengying, Wang Ke, Persistence of some stage structured ecosystems with finite and infinite delay, Appl. Math. Comput. 2007, 189(1): 902-909.

[35] Gao Haiyin, Wang Ke,Wei Fengying, Ding Xiaohua, Massera-type theorem and asymptotically periodic Logistic equations, Nonlinear Anal. RWA. 2006, 7(5): 1268-1283.

[36] Wei Fengying, Wang Ke, Asymptotically periodic solution of n-species cooperation system with time delay, Nonlinear Anal. RWA. 2006, 7(4): 591-596.

[37] Wei Fengying, Wang Ke, Global stability and asymptotically periodic solution for nonautonomous cooperative Lotka–Volterra diffusion system, Appl. Math. Comput. 2006, 182(1): 161-165.

[38] Wei Fengying, Wang Ke, Permanence of variable coefficients predator-prey system with stage structure, Appl. Math. Comput. 2006, 180(2): 594-598.

[39] Wei Fengying, Wang Ke, Uniform persistence of asymptotically periodic multispecies competition predator pray systems with Holling III type functional response, Appl. Math. Comput. 2005, 170(2): 994-998.