• 刘勇进

  • 职称:

    教授

  • 职务:

    博士生导师

  • 主讲课程:

    运筹学,数值分析,最优化方法

  • 研究方向:

    最优化理论、方法与应用,统计优化,数值计算

  • 办公室:

    数统学院4号楼221

  • 电子邮件:

    yjliu at fzu.edu.cn

基本信息:

刘勇进,福州大学嘉锡学者特聘教授、博士生导师,福建省“闽江教育领军人才”闽江学者特聘教授,福建省百千万人才工程省级人才福建省应用数学中心(福州大学)主任。202112月起担任福州大学数学与统计学院院长。其研究方向主要集中在最优化理论、方法及其应用,统计优化,大规模数值计算等,研究成果在Mathematical Programming (Series A)SIAM Journal on OptimizationSIAM Journal on Scientific ComputingJournal of Scientific ComputingComputational Optimization and ApplicationsJournal of Optimization Theory and ApplicationsSet-Valued and Variational Analysis等重要优化与计算学术期刊上发表,发表论文已被引500余次。主持完成福建省本科高校教育教学改革研究重大项目1项, 曾获福建省高等教育教学成果一等奖1项(排名第一)。

教育及工作经历:

⟡ 2018.02-现在,福州大学,数学与统计学院,教授

⟡ 2020.11-2021.05,华为香港研究所理论部,高级研究人员

⟡ 2016.06-2016.08,北京大学,北京国际数学研究中心,访问学者

⟡ 2015.07-2015.09,香港浸会大学,理学院数学系,访问教授

⟡ 2007.05-2018.01,沈阳航空航天大学,理学院,副教授、教授

⟡ 2011.03-2011.04,Department of Mathematics,National University of Singapore,访问学者

⟡ 2006.07-2010.01,Singapore-MIT Alliance,National University of Singapore,Research Fellow

⟡ 2004.08-2006.07,汕头大学,数学系,博士后

⟡ 2002.03-2002.05,2002.10-2002.11,香港城市大学,管理科学系,研究助理

⟡ 1999.09-2004.07,大连理工大学,应用数学系,运筹学与控制论专业(硕博连读),博士

⟡ 1995.09-1999.07,赣南师范大学,数学教育学专业,学士

学术任职:

⟡ 中国数学会理事(2024-至今)

⟡ 中国运筹学会理事(2024-至今)

⟡ 中国运筹学会数学规划分会常务理事(2023-至今)

⟡ 中国运筹学会算法软件与应用分会常务理事(2024-至今)

⟡ 中国统计学会理事(2023-至今)

⟡ 中国运筹学会智能工业数据解析与优化分会理事(2015-至今)

⟡ 福建省数学学会副会长(2024-至今)

科研项目:

14)基于网络科学核心技术研究的关键数学理论与算法(福建省应用数学中心平台建设),项目编号:2023L3003,中央引导地方科技发展专项,2023.12-2026.11,参与

13)电力系统运行可靠性评估状态筛选的高效组合优化方法,项目编号:2023YFA1011302,国家重点研发计划项目课题,2023.12-2028.11,参与

12)大规模密度矩阵约束凸优化问题的算法研究,项目编号:2023SXLMMS01,福建省数学学科联盟科研项目,2023.12-2026.11,主持

11)低秩矩阵优化问题理论、算法及其应用研究,项目编号:2023J02007,福建省自然科学基金重点项目,2023.08-2026.07,主持

10)大规模密度矩阵优化问题的高效算法及其应用,国家自然科学基金面上项目,项目编号:12271097,2023.01-2026.12,主持

9)高维数据驱动稀疏低秩优化问题有效算法的研究及其应用,国家自然科学基金面上项目,项目编号:11871153,2019.01-2022.12,主持

8)基于统计学习的超大规模稀疏优化问题算法的研究及其应用,项目编号:2019J01644,福建省自然科学基金面上项目,2019.06-2022.05,主持

7)超大规模Lasso类统计模型高效算法的研究及其实现,福州大学引进人才科研启动基金,2018.09-2021.08,主持

6)非对称矩阵优化问题的灵敏度分析、算法及其应用,国家自然科学基金面上项目,项目编号:11371255,2014.01-2017.12,主持

5)两类大规模矩阵优化问题的算法研究与软件设计,国家自然科学基金青年基金项目,项目编号:11001180,2011.01-2013.12,主持

4)大规模核范数优化问题理论、算法及其应用研究,教育部留学回国人员科研启动基金,项目编号:JYB201302,2012.12-2015.11,主持

3)辽宁省高等学校优秀科技人才支持计划,项目编号:LR2015047,辽宁省教育厅人才项目,2015.07-2018.01,主持

2)矩阵优化问题数值方法的研究及其实现,项目编号:辽百千万立项【2015】51号,辽宁省“百千万人才工程”资助项目,2015.11-2018.10,主持

1)辽宁省高等学校杰出青年学者成长计划,项目编号:LJQ2012012,辽宁省教育厅人才项目,2012.07-2014.06,主持

主要代表性论著:

35. Lulu Zhao, Yue Liu, Yong-Jin Liu*, Accelerated stochastic alternating mirror descent sscent algorithm for nonconvex-strongly concave minimax problems, submitted. 

34. Weimi Zhou, Yong-Jin Liu*, On Wasserstein distributionally robust mean semi-absolute deviation portfolio model: robust selection and efficient computation, submitted.

33. Suyu Chen, Yong-Jin Liu*, Jing Yu, Weimi Zhou, A semismooth Newton based augmented Lagrangian algorithm for Lovasz theta SDP problem, submitted.

32. Yong-Jin Liu, Yuqi Wan, Lanyu Lin*, An efficient algorithm for Fantope-constrained sparse principal subspace estimation problem, submitted.

31. Yong-Jin Liu, Weimi Zhou*, Dual Newton proximal point algorithm for solution paths of the L1-regularized logistic regression, submitted.

30. Weimi Zhou , Yong-Jin Liu*, Fast projection onto the intersection of simplex and singly linear constraint and its generalized Jacobian, to appear in Pacific Journal of Optimization.

29. Sheng Fang, Yong-Jin Liu, Wei Yao, Chengming Yu, Jin Zhang*, QNBO: Quasi-Newton meets bilevel optimization, International Conference on Learning Representations, 2025.

28. Jinyang Mao, Junlin Xu*, Xianfang Tang, Yongjin Liu*, Heaven Zhao, Geng Tian, Jialiang Yang*, CAMIL: Channel attention based multiple instance learning for whole slide image classification, Bioinformatics, 2025 Jan 16:btaf024. doi: 10.1093/bioinformatics/btaf024.

27. Lanyu Lin, Yong-Jin Liu*, An inexact semismooth Newton-based augmented Lagrangian algorithm for multi-task Lasso problems, Asia-Pacific Journal of Operational Research, 41:3 (2024), Doi: 10.1142/S0217595923500276.

26. Yong-Jin Liu*, Jing Yu, A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem, Computational Optimization and Applications, 85 (2023), pp. 547–582.

25. Yong-Jin Liu*, Tiqi Zhang, Sparse Hessian based semismooth Newton augmented Lagrangian algorithm for general L1 trend filtering, Pacific Journal of Optimization, 19:2 (2023), pp. 187–204.

24. Yong-Jin Liu*, Jiajing Xu, Lanyu Lin, An easily implementable algorithm for efficient projection onto the ordered weighted L1 norm ball, Journal of the Operations Research Society of China, 2022, https://doi.org/10.1007/s40305-022-00414-8.

23. Yong-Jin Liu*, Jing Yu, A semismooth Newton-based augmented Lagrangian algorithm for density matrix least squares problems, Journal of Optimization Theory and Applications, 195:3 (2022), pp. 749–779.

22. Yong-Jin Liu*, Qinxin Zhu, A semismooth Newton based augmented Lagrangian algorithm for Weber problem, Pacific Journal of Optimization, 18:2 (2022), pp. 299–315.

21. Bo Wang, Lanyu Lin and Yong-Jin Liu*, Efficient projection onto the intersection of a half-space and a box-like set and its generalized Jacobian, Optimization, 71:4 (2022), pp. 1073–1096.

20. Sheng Fang, Yong-Jin Liu* and Xianzhu Xiong, Efficient sparse Hessian based semismooth Newton algorithms for Dantzig selector, SIAM Journal on Scientific Computing, 202143:6 (2021)pp. A4347–A4371.

19. Lanyu Lin, Yong-Jin Liu*, An efficient Hessian based algorithm for singly linearly and box constrained least squares regression, Journal of Scientific Computing, 88:26 (2021), https://doi.org/10.1007/s10915-021-01541-9.

18. Sheng Fang, Yong-Jin Liu*, The generalized Jacobian of the projection onto the intersection of a half-space and a variable box, Annals of Applied Mathematics, 36:4 (2020), pp. 379–390.

17. Meixia Lin, Yong-Jin Liu*, Defeng Sun and Kim-Chuan Toh, Efficient sparse semismooth Newton methods for the clustered Lasso problem, SIAM Journal on Optimization, 29:3 (2019), pp. 2026–2052.

16. Yong-Jin Liu*, Ruonan Li and Bo Wang, On the characterizations of solutions to perturbed L1 conic optimization problem, Optimization, 68:6 (2019), pp. 1157–1186.

15. Meijiao Liu, Yong-Jin Liu*, Fast algorithm for singly linearly constrained quadratic programs with box-like constraints, Computational Optimization and Applications, 66:2 (2017), pp. 309–326.

14. Yong-Jin Liu*, Yanan Wen, A linear time algorithm for the continuous quadratic knapsack problem with L1 regularization, Pacific Journal of Optimization, 13:2 (2017), pp. 301–313.

13. Caihua Chen*, Yong-Jin Liu, Defeng Sun and Kim-Chuan Toh, A semismooth Newton-CG based dual PPA for matrix spectral norm approximation problems, Mathematical Programming, Series A, 155:1 (2016), pp. 435–470.

12. Yong-Jin Liu*, Li Wang, Properties associated with the epigraph of the L1 norm function of projection onto the nonnegative orthant, Mathematical Methods of Operations Research, 84:1 (2016), pp. 205–221.

11. Yong-Jin Liu, Ning Han, Shiyun Wang and Caihua Chen*, Differential properties of the metric projectors over the epigraph of the weighted L1 and L_∞ norms, Pacific Journal of Optimization, 11:4 (2015), pp. 737–749.

10. Yong Jiang, Yong-Jin Liu and Li-Wei Zhang*, Variational geometry of the complementarity set for second order cone, Set Valued and Variational Analysis, 23 (2015), pp. 399–414.

9. Shiyun Wang, Yong-Jin Liu* and Yong Jiang, A majorized penalty approach to inverse linear second order cone programming problems, Journal of Industrial and Management Optimization, 10:3 (2014), pp. 965–976.

8. Yong-Jin Liu*, Shiyun Wang and Juhe Sun, Finding the projection onto the intersection of a closed half-space and a variable box, Operations Research Letters, 41 (2013), pp. 259–264.

7. Yong-Jin Liu, Defeng Sun* and Kim-Chuan Toh, An implementable proximal point algorithmic framework for nuclear norm minimization, Mathematical Programming, Series A, 133 (2012), pp. 399–436.

6. Yidi Chen, Yan Gao* and Yong-Jin Liu, An inexact SQP Newton method for convex SC1 minimization problems, Journal of Optimization Theory and Applications, 146:1 (2010), pp. 33–49.

5. Yong-Jin Liu*, Li-Wei Zhang, Convergence of the augmented Lagrangian method for nonlinear optimization problems over second-order cones, Journal of Optimization Theory and Applications, 139:3 (2008), pp. 557–575.

4. Yong-Jin Liu*, Li-Wei Zhang, On the approximate augmented Lagrangian for nonlinear symmetric cone programming, Nonlinear Analysis: Theory, Methods & Applications, 68:5 (2008), pp. 1210–1225.

3. Yong-Jin Liu*, Li-Wei Zhang, Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problems, Nonlinear Analysis: Theory, Methods & Applications, 67:5 (2007), pp. 1359–1373.

2. Yue Wu, Kin Keung Lai* and Yong-Jin Liu, Deterministic global optimization approach to steady-state distribution gas pipeline networks, Optimization and Engineering, 8:3 (2007), pp. 259–275.

1. Yong-Jin Liu*, Li-Wei Zhang and Yin-He Wang, Some properties of a class of merit functions for symmetric cone complementarity problems, Asia-Pacific Journal of Operational Research, 23:4 (2006), pp. 473–495.

学生培养:

博士研究生:郭汉文(2024) 陈晓轩(2023) 王涵(2023,副导师) 周玮蜜(2022) 赵璐璐(2022,副导师) 方升(2021) 林蓝玉(2020) 余静(2019

硕士研究生:谢培诚(2024 郑雯文(2024 钟永蕾(2024 傅源源(2024 陈潆潆(2024 刘涛(2024李文蓝(2023) 徐龙龙(2023) 刘美阳(2023) 吕家哲(2023) 潘静瑜(2023) 林雅晶(2023) 侯丹丹(2022) 徐燕梅(2022) 郭汉文(2022) 黄鑫(2022) 黄若晗(2022) 毛金阳(2022) 陈苏愉(2021) 万玉奇(2021) 张文文(2021) 罗曦(2020,副导师) 汤婉红(2020) 杨子斌(2020) 周玮蜜(2020) 许嘉警(2019) 张体琪(2019) 祝勤鑫(2019) 方升(2018,副导师) 林蓝玉(2018) 李若男(2015) 彭君君(2015) 温亚楠(2015) 张伟伟(2015) 刘娟(2013) 赵敬红(2013) 韩宁(2011) 胡旭(2011)