报告题目:Ramified and Unramified Motivic Euler Sums, Multiplet-,T- andS-Values
报告人:徐策
报告时间:2024年10月03日15:00-
报告地点:数统学院4号楼3楼306
邀请单位:福州大学数学与统计学院,钟展良
报告内容简介:
In this talk we shall consider a few variants of the motivic multiple zeta values of level two by restricting the summation indices in the definition of multiple zeta values to some fixed parity patterns. These include Hoffman's multiplet-values, Kaneko and Tsumura's multipleT-values, and the multipleS-values studied previously by the authors. By applying Brown and Glanois's descent theory on the motivic versions of these values we shall derive some criterion for when these values are ramified and unramified. Assuming Grothendieck's period conjecture, our results partially confirms a conjecture of Kaneko and Tsumura about when multipleT-values can be expressed as a rational linear combination of multiple zeta values (i.e., unramified) if their depth is less than four. Similar results are obtained for motivic multipleS-values. Further, we are able to generalize a result of Charlton to more families of unramified multiplet-values with unit components (i.e. component equal to 1). We propose some more unsolved problems at the end of the talk. This is a joint work with Jianqiang Zhao.
报告人简介:
徐策,硕士生导师,安徽师范大学数学与统计学院副教授。2020年博士毕业于厦门大学,同年加盟安徽师范大学数学与统计学院。曾在日本九州大学访学一年,师从Masanobu Kaneko教授,主要从事多重zeta值(Multiple zeta values, MZVs)及其相关变形的研究。主持国家自然科学基金,安徽省自然科学基金和安徽省教育厅高校项目各1项。在《Mathematische Zeitschrift》《Journal of Algebra》《Indagationes Mathematicae》《Forum Mathematicum》《Advances in Applied Mathematics》《Journal of Number Theory》《European Journal of Combinatorics》《Comptes Rendus Mathematique》《Monatshefte für Mathematik》《Ramanujan Journal》《International Journal of Number Theory》《Journal of Symbolic Computation》《Chinese Annals of Mathematics, Series B》等期刊发表论文60余篇。