湖南大学周建丰助理教授学术报告

发布日期:2023-10-13    浏览次数:

报告题目:Global well-posedness of Doi-Onsager equations

报告人:周建丰

报告时间:2023年10月16日18:00-19:00

报告地点:数统学院323(腾讯会议932 495 5583)

邀请单位:福州大学数学与统计学院

报告内容简介:

In this talk, I will introduce two results of theglobal well-posedness of Doi-Onsager equations. First, for any large initial data, by constructing some auxiliary functions,we prove the global existence and uniqueness of smooth solution to Doi-Onsager equations under the effect of translational diffusion in $\mathbb{T}^2$. Next, We are concerned with the global well-posedness for $3D$ Doi-Onsager equation in the case when hydrodynamics effects are neglected.The global existence and uniqueness of smooth solution near a evolutionary equilibrium $h(m\cdot n(x,t))$ is investigated. Meanwhile,we show a sufficient condition for the existence of smooth solution to the Doi-Onsager equation is that $n$ is the solution of the harmonic map heatflow equation.

报告人简介:

周建丰,2013年本科毕业于南昌大学,2019年博士毕业于厦门大学。2019-2021北京大学数学科学学院博士后,现工作于湖南大学数学学院。主要从事偏微分方程的理论研究。他已在CVPDE,JMFM,Sci. China Math.,JDE等数学刊物上发表学术论文10余篇。