报告题目:Shortest Circuit Covers of Signed Graphs
报告人:李佳傲副教授(南开大学)
报告时间:2022年1月7日 09:00-12:00
报告地点:腾讯会议 409-171-165
邀请单位:福州大学数学与统计学院,离散数学及其应用教育部重点实验室
报告摘要:
A signed graph is a graph in which each edge receives a positive or a negative sign. In a signed graph, a sign circuit is either a balanced circuit or barbell. A signed graph is called flow-admissible if each edge lies in a sign circuit. In this talk, we show that every flow-admissible signed graph with m edges can be covered by some sign circuits whose total length is at most 32m/13<2.47m. We will mainly talk about some proof techniques of this result, including some reduction tricks and some flow cover/decomposition lemmas. This connects the flow theory and circuit cover theory in signed graphs.
报告人简介:
李佳傲,南开大学数学科学学院副教授,硕士生导师。2012年和2014年在中国科学技术大学获得本科和硕士学位。2018年博士毕业于美国西弗吉尼亚大学,导师为赖虹建教授。2018年7月入职南开大学数学科学学院。主要研究兴趣是离散数学与组合图论。包括Tutte整数流理论,图的染色,图结构与分解,网络与组合优化等问题。已在J. Combin. Theory Ser. B,SIAM J. Discrete Math, J. Graph Theory 等本专业主流杂志发表论文二十余篇。现主持国家自然科学基金青年项目1项,天津市基金2项。