武汉大学李维喜教授学术报告

发布日期:2021-11-24    浏览次数:

报告题目:Well-posedness in Gevrey function spaces for the Prandtl equations with non-degenerate critical points

报告人:李维喜教授(武汉大学)

报告时间:202111261900-2000

报告地点:数学与统计学院4号楼302/ID: 788-436-987


报告摘要:

We study the well-posedness of the Prandtl system without monotonicity and analyticity assumption. Precisely, for any index σ∈[3/2,2], we obtain the local in time well-posedness in the space of Gevrey class in the tangential variable and Sobolev class in the normal variable so that the monotonicity condition on the tangential velocity is not needed to overcome the loss of tangential derivative. This answers an open question raised by D. Gérard-Varet and N. Masmoudi [Ann. Sci. École Norm. Sup. (4) 48 (2015), 1273–1325] [MR3429469], who solved the case σ=7/4.


报告人简介:

李维喜,武汉大学数学与统计学院教授、博士生导师,研究方向为微局部分析及其应用,主要从事偏微分方程和数学物理方程的研究,特别是在流体力学方程的边界层理论,退化椭圆方程的正则性,以及谱分析等方面做出了一系列出色的工作,研究成果发表在Communications on Pure and Applied MathematicsJournal of the European Mathematical SocietyAdvances in Mathematics等国际著名SCI数学期刊上。曾主持国家优秀青年基金、霍英东教育基金、国际(地区)合作与交流项目等国家基金项目,曾作为主要参与人获教育部自然科学奖一等奖。